Explicit Representation of Green Function for 3d Dimensional Exterior Helmholtz Equation

نویسندگان

  • J. P. Cruz
  • E. L. Lakshtanov
چکیده

We have constructed a sequence of solutions of the Helmholtz equation forming an orthogonal sequence on a given surface. Coefficients of these functions depend on an explicit algebraic formulae from the coefficient of the surface. Moreover, for exterior Helmholtz equation we have constructed an explicit normal derivative of the Dirichlet Green function. In the same way the Dirichlet-to-Neumann operator is constructed. We proved that normalized coefficients are uniformly bounded from zero.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neumann Problem Three - Dimensional Helmholtz Equation

A method for explicitly solving the exterior Dirichlet problem for the threedimensional Helmholtz equation in terms of the Dirichlet Green's function for Laplace's equation has recently been found [6]. The present work shows how a similar technique may be used to solve the exterior Neumann problem in terms of the corresponding Neumann-Green function for Laplace's equation. The existence of the ...

متن کامل

Analysis of a Spectral-Galerkin Approximation to the Helmholtz Equation in Exterior Domains

An error analysis is presented for the spectral-Galerkin method to the Helmholtz equation in 2and 3-dimensional exterior domains. The problem in unbounded domains is first reduced to a problem on a bounded domain via the Dirichlet-to-Neumann operator, and then a spectral-Galerkin method is employed to approximate the reduced problem. The error analysis is based on exploring delicate asymptotic ...

متن کامل

Stable Gaussian radial basis function method for solving Helmholtz equations

‎Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems‎. ‎They are often referred to as a meshfree method and can be spectrally accurate‎. ‎In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion‎. ‎We develop our approach in two-dimensional spaces for so...

متن کامل

Implicit boundary integral methods for the Helmholtz equation in exterior domains

We propose a new algorithm for solving Helmholtz equations in the exterior domain. The algorithm not only combines the advantages of implicit surface representation and the boundary integral method, but also provides a new way to compute a class of the so-called hypersingular integrals. The keys to the proposed algorithm are the derivation of the volume integrals which are equivalent to any giv...

متن کامل

APPLICATION OF EXP-FUNCTION METHOD TO THE (2+1)-DIMENSIONAL CALOGERO BOGOYAVLANSKII SCHIFF EQUATION

In this paper, the Exp-function method, with the aid of a symbolic computation system such as Maple, is applied to the (2+1) -dimensional Calogero Bogoyavlanskii Schiff equation. Exact and explicit generalized solitary solutions are obtained in more general forms. The free parameters can be determined by initial or boundary conditions. The method is straightforward and concise, and its applicat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008